NUTRIENT MANAGEMENT
CALIFORNIA ALMOND SUSTAINABILITY PROGRAM
Acknowledgments

Editors
Daniel Sonke, D.P.M., Senior Scientist, SureHarvest
Andrew Arnold, Senior Consultant, SureHarvest
Gabriele Ludwig, Ph.D., Associate Director, Environmental Affairs, Almond Board of California
Jeff Diott, Ph.D., President, SureHarvest

Contributing Reviewers
Matt Angell, Strategic Farming, Inc.
Walt Bentley, IPM Entomologist, UC Kearney Research and Extension Center
Joe Browde, Ph.D., Professional Services Manager, SureHarvest
Patrick Brown, Ph.D., Pomologist-AES Professor of Plant Nutrition, UC Davis
Joe Connell, Farm Advisor, UC Cooperative Extension, Butte County
Robert Curtis, Associate Director, Agricultural Affairs, Almond Board of California
David Doll, Pomology Farm Advisor, UC Cooperative Extension, Merced County
Roger Duncan, Pomology Farm Advisor, UC Cooperative Extension, Stanislaus County
Dave Goorahoo, Ph.D., Assistant Professor - Vegetable Crops, CSU Fresno
Stan Grant, Principal, Progressive Viticulture
Christopher Hartley, Ph.D., District Conservationist, NRCS - Stanislaus County
Tim Hartz, Ph.D., Vegetable Crops Specialist, UC Davis
Brian Hockett, District Manager, Northwest Kern Resource Conservation District
Will Horwath, Ph.D., Professor of Soil Biogeochemistry, UC Davis
Parry Klassen, Executive Director, Coalition for Urban/Rural Environmental Stewardship
Bruce Lampinen, Ph.D., Integrated Orchard Management/Walnut and Almond Specialist, UC Davis
Rob Mikkelsen, Ph.D., Western Region Director, International Plant Nutrition Institute
Ron Nydam, Waterford Irrigation Supply and President, California Agricultural Irrigation Association
Terry Prichard, Irrigation Water Management Specialist, UC Cooperative Extension
Blake Sanden, Irrigation/Soils Farm Advisor, UC Cooperative Extension, Kern County
Ken Shackel, Ph.D., Professor of Pomology, UC Davis
Jim Yager, Ph.D., Strategic Farming, Inc.
INTRODUCTION – SUSTAINABILITY AND NUTRIENT MANAGEMENT

California Almond growers have a wide array of soil fertility tools at their fingertips today—more than ever before. Given that fertilizer costs have increased significantly and nutrients are increasingly found as contaminants in water resources, it only makes sense to use available tools to maximize nutrient use efficiency.

The International Plant Nutrition Institute, a fertilizer trade organization, promotes the efficient use of fertilizer through the concept of right source, right amount, right timing and right place. The practices within this module have been grouped according to this concept.

*The right source* will deliver the precise balance of nutrients your trees need for optimum yields without excess, and the best chemistry to do so at the right price without negative effects on plant health or soil quality.

*The right amount* takes into account the actual nutrient load the crop needs for optimum yields based not only on a realistic assessment of yield potential but also the nutrients present in the soil or being delivered via some other route such as organic matter or nitrate-laden irrigation water. Any less, and your yield might be suboptimum; any more, and you likely will waste money and possibly contaminate water resources. Some almond growers are experimenting with nutrient sampling methods which identify variable needs throughout the orchard and precision application methods which deliver different rates at different orchard locations—matching the nutrient rate for each location to its need. While still somewhat experimental for almonds (though increasingly common in field crops), the potential for increasing nutrient use efficiency by precision application is attractive.

*The right timing* ensures that applications of nutrients coincide with key periods of uptake, growth, and nut development in the tree.

*The right place* refers to the delivery of nutrients to precise areas of the root zone to optimize utilization and minimize loss. When used properly, today’s fertigation technologies can deliver nutrients right into the root zone. But the same technologies can just as easily flush nutrients below the root zone if used improperly.

The combination of the best type and amount of fertilizer for your soil and trees, right timing in the season, and the right placement in the root zone will maximize yield response and cause the least waste—and also the least negative environmental impact.
Nutrient Management

1. How many pounds of nitrogen (N) were applied per acre for this orchard in the season being assessed?  
   lbs/acre

2. How many pounds of phosphorus (P) were applied per acre for this orchard in the season being assessed? (NOTE: Please use actual P instead of P<sub>2</sub>O<sub>5</sub>*).  
   lbs/acre

3. How many pounds of potassium (K) were applied per acre for this orchard in the season being assessed? (NOTE: Please use actual K instead of K<sub>2</sub>O*).  
   lbs/acre

4. What is the percent soil organic matter for this orchard, as measured in the past 5 years**?  
   %

   IF YOU HAVEN'T TESTED FOR THIS, CHECK HERE

   SOURCE

5. The following sources of nitrogen were utilized in this orchard in the past year. (Select all that apply):
   a. commercial in-organic nitrogen fertilizer  
   b. manure (not recommended for food safety reasons)  
   c. compost  
   d. nitrogen-fixing cover crops

   SOURCE

6. If compost, manure, or nitrogen-fixing cover crops were used, their nitrogen contribution to the crop was estimated and used in calculating the total nitrogen applied.

7. Irrigation well water (if used) has been analyzed for its nitrogen content at least once during the past 3 years.

   a. If the test indicates the water has nitrogen, the amount of nitrogen applied via irrigation over the season is calculated and used in calculating the total nitrogen applied.

   *Fertilizer labels generally list P and K content as P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O instead of actual P and K. That is, a bag of fertilizer labeled 10-10-10 does not contain 10 lbs of N, 10 lbs of P and 10 lbs of K; the label designation means 10 lbs of N, 10 lbs of P<sub>2</sub>O<sub>5</sub>, and 10 lbs of K<sub>2</sub>O. If you know how many lbs P<sub>2</sub>O<sub>5</sub> were applied and want to convert to actual P applied, multiply by 0.44 (e.g., 10 lbs P<sub>2</sub>O<sub>5</sub> x 0.44 = 4.4 lbs P). Note that most soils in the Central Valley seldom require P applications. To convert lbs K<sub>2</sub>O applied to lbs K, multiply by 0.83 (e.g., 10 lbs K<sub>2</sub>O x 0.83 = 8.3 lbs K).

   **To test for soil organic matter, it is recommended you use a lab that uses a combustion method rather than the Walkley-Black method.

   This practice may also have food safety implications. Consult ABC GAP recommendations for more information.
For my orchard, I am using the following practices and/or technologies for maximizing nutrient management efficiency:

<table>
<thead>
<tr>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>a.</td>
</tr>
<tr>
<td>b.</td>
</tr>
<tr>
<td>c.</td>
</tr>
<tr>
<td>d.</td>
</tr>
<tr>
<td>e.</td>
</tr>
<tr>
<td>f.</td>
</tr>
<tr>
<td>g.</td>
</tr>
<tr>
<td>h.</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>a.</td>
</tr>
<tr>
<td>b.</td>
</tr>
<tr>
<td>c.</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>a.</td>
</tr>
</tbody>
</table>
For my orchard, I am using the following practices and/or technologies for maximizing nutrient management efficiency:

<table>
<thead>
<tr>
<th></th>
<th>Not familiar with this</th>
<th>I haven’t tried it</th>
<th>My current practice</th>
<th>Not applicable</th>
</tr>
</thead>
</table>

### TIMING

12 Do you broadcast nitrogen?  □ Yes □ No

13 Do you fertigate nitrogen?  □ Yes □ No

14 Nutrient applications are timed primarily to spring growth and crop demand. □ □ □ □

15 Nitrogen is applied to the orchard...

   a. once a year.
   b. twice a year.
   c. three or more times a year.

### PLACEMENT

16 Variable rate applications are made to account for variations in orchard productivity. □ □ □ □ □

17 To reduce the likelihood of nitrogen leaching or runoff, I...

   a. time fertilizer applications with irrigation and rainfall (where possible) so water moves the nitrogen into the root zone without running off or leaching beyond the root zone.
   b. use organic matter, filter strips, or cover crops.
   c. monitor the depth of irrigation water in the soil to place nutrients in the root zone and not beyond.

### NUTRIENT MANAGEMENT BUDGET

18 In addition to the above practices, I have written a comprehensive nutrient management plan and budget for this orchard which guides my annual nutrient management. □ □ □ □

19 Other: ____________________________________________
For my orchard, I am using the following practices and/or technologies for optimizing fertigation performance:

<table>
<thead>
<tr>
<th></th>
<th>Not familiar with this</th>
<th>I haven't tried it</th>
<th>I have tried it</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>I have determined the injection time for my fertilizers to place them properly in the root zone and prevent leaching. (Prior to initiating injection, the system is at the proper pressure.)</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>I have determined the injection time for my system cleaning solutions to provide effective cleaning and proper rinsing.</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Before mixing new materials for injection (for cleaning or fertilization), I have performed a jar test* to check their compatibility; OR I avoid mixing materials and assure fertilizer storage tanks are thoroughly rinsed and irrigation systems are completely flushed between changes in fertilizer formulations.</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>At least one back flow prevention device is installed between the water source and the injection site. (County regulations vary—some require more than one device.)</td>
<td>☐ ☐ ☐ ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Other: ________________________________________________</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Jar test—Using water from the source of your irrigation, mix fertilizers or other injection materials in the concentrations and order which you plan to use them. If the resulting mixture is clear, they are likely compatible. If the mixture is cloudy, they may or may not be compatible—further information is required.

References & more information
