

## Pollination: Prep, Parnerships and Policy







The Almond Conference



Pollination: Preparation Partnership and Policy

Christi Heintz ABC Bee Task Force Liaison Executive Director, Project Apis m



## **Preparation for Almond Pollination**

• What does it take to get bees to almonds?

## Partners

- Are we collectively solving CCD?
- Are we collaboratively improving honey bee health?

## Policy

• What's on the horizon to help honey bees?



#### We are still seeing honey bee losses

- Research Summit Nov. 12, 2012
  - 1. Varroa/virus complex
  - 2. Pesticides
  - 3. Nutrition/habitat loss

## Vision

Ensure long-term sustainability of honey bees to protect the nation's food supply

# **Honey Bee Health**



## **Strategic Priorities**

- 1. Coordinate research and funding
- 2. Enhance technology transfer
- 3. Create beekeeper business model

Ensure long-term sustainability of honey bees to protect the nation's food supply

# Working to improve bee supply





## **Almond Grower Investment in Bee Health**

- ABC has funded research in pollination since 1976, investing some \$2 million of almond grower dollars
  - Largest, most sustained of any commodity organization
  - Honey bee health a focus since 1995 nutrition, stock improvement, pest/disease management, impact of pesticides - \$1.4 million spent
  - Since 2003, \$950,000 spent on 55 projects

 Partnering with beekeepers (e.g., Project Apis m and CSBA) and research institutions





|                             | Current Almond Board Funded<br>Pollination Research                                                                                          | 2011-12   | 2012-13   |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| Cobey, UCD                  | Stock Improvement                                                                                                                            | \$21,020  | _         |
| Sheppard, Wash<br>St U      | Cyropreservation, Germplasm Preservation for Stock Improvement                                                                               | \$20,629  | \$35,605  |
| Spivak, U Minn              | Tech Transfer to Improve Honey Bee<br>Genetics, Health, and Stocks                                                                           | \$20,000  |           |
| Mueller, UCCE Fresno<br>Co. | Colony Evaluation – an Online Learning<br>Course                                                                                             | \$3,300   |           |
| Huang, Mich St Univ         | RNAi as a Control Method for Varroa                                                                                                          | \$17,960  |           |
| Carroll, USDA Tucson        | Varroa Control Using Brood Host Volatiles                                                                                                    | \$13,050  |           |
| Eischen , USDA<br>Weslaco   | Honey Bee Colony Density and Nut Set                                                                                                         |           | \$33,845  |
| Frazier, Penn State         | Insecticides and Fungicides Found in<br>Migratory Honey Bee Colonies and their<br>Impacts on Immune Function and Varroa<br>Population Levels |           | \$40,748  |
| Hooven, Oregon St U         | Fungicide Effects on Honey Bee Development                                                                                                   | \$10,000  | \$10,000  |
|                             | Total                                                                                                                                        | \$105,959 | \$120,198 |

# **Project Apis M** Funding



| Ellis         | UF               | Varroa Control-RNAi    | \$ | 16,835  |
|---------------|------------------|------------------------|----|---------|
| DeRisi        | UCSF             | Viruses & Pathogens II | \$ | 45,000  |
| Bromenshenk   | <b>Bee Alert</b> | Virus & Nosema         | \$ | 36,000  |
| Flenniken     | MSU              | Virology & Immunology  | \$ | 43,500  |
| Martin        | UK/HA            | Virus-Pathogen Complex | \$ | 32,556  |
| Wick          | BVS, Inc         | Virus & Essential Oils | \$ | 15,000  |
| Spivak        | U MN             | Landscapes & Nutrition | \$ | 10,000  |
| Huang et al   | MSU              | Amino Acids            | \$ | 27,500  |
| Eischen       | USDA             | Colony Density Almonds | \$ | 16,200  |
| Pettis        | USDA             | Amitraz                | \$ | 33,140  |
| Frazier       | PSU              | Pesticide CostShare    | \$ | 10,000  |
| Johnson, R    | OH State         | Pristine               | \$ | 29,690  |
| vanEngelsdorp | U MD             | Midwest Tech Transfer  | \$ | 21,430  |
| Mueller       | UCCE             | On-Line Tools          | \$ | 3,300   |
|               | 75               |                        | Ś  | 340 151 |





# Working to improve bee supply

- Building Honey Bee Forage
  Session following in Research Presentations
- Improving Transit through Border Stations
- Promoting Best Management Practices
- Supporting Tech Transfer Teams
- Seeking Grant Funding
- Seeking Corporate Funding









# Thank you!







Maintaining Colony Quality and Numbers for Almond Pollination

George Hansen Foothills Honey Co LLC Colton, Oregon







Natural Annual Cycle for Honey Bees **Causes of Colony Loss** Pest and Pathogen Control Queen Quality, requeening Maintaining hives during season Preparation of colonies for winter. Honey Bee Nutrition Costs

# **Natural Annual Cycle for Honey Bees**

- Growing Advantage The Almond Conference
- Colonies expand and contract depending on Seasonal Cycles.
- Temperature, length of day, availability of pollen and nectar are triggers to expansion/contraction.
- Beekeeper has little or no control over these triggers, except through supplemental feeding.

#### WILLAMETTE VALLEY BEEKEEPING CYCLES





Beekeepers report a small percentage of colonies lost had CCD symptoms

The majority of colony losses are from causes that beekeepers know and have some control over



- Monitor levels
- **Timely Treatments**
- Check efficacy
- Double check for reinfestation
- Beekeepers do not have field reps, monitoring services, or extension specialists to monitor and make pest control recommendations.



- Annual requeening
- Make sure of acceptance
- Be cognizant of health issues in selection of queen stock
- Queen at her best when she will make the most impact





Ensure proper nutrition Comb replacement schedule Eliminate stressful and unprofitable placements Plan for attrition



Young Bees Fat Bees Best Feed Money Can Buy Quality Queens at their peak Pests and Pathogens under control Pollen vs Substitute.

Preparation for Almonds starts in Early August



- Bees need both Carbohydrates and Protein.
- Bees can bridge short periods of dearth.
- Nutrition is the first defense against disease and pesticide exposure.
- No single pollen source provides all the amino acid needs for a full diet.
- By itself, no protein supplement currently available will sustain bees for more than a few weeks.





Cost Estimates for Successful Wintering High colony counts High populations February 1 timeline for delivery \$200/ colony















# Questions