

THANK YOU TO THE ALMOND CONFERENCE 2022 METAL SPONSORS!

We Want to Hear from You!

The Almond Board is conducting research to understand your experiences, perceptions and needs/wants of The Almond Conference. This information will improve future conferences. During the conference, we'll conduct several focus group sessions and short individual interviews.

Focus Group Sessions

These will be in Room 15 (Level 2-across from Ballroom B-5) during the following times:

Wednesday, December 7, 2022

- 9:30-10:30 a.m.
- 11:45 a.m.–12:45 p.m.
- 4:00-5:00 p.m.

Thursday, December 8, 2022

• 10:30-11:30 a.m.

If you are interested in being a part of the focus group, please use this QR code to select a time!

Short Individual Interviews

Throughout the conference, Vivayic, the research organization, will also ask select attendees about their conference experiences.

Vivayic will have a neon yellow ribbon on their name badges that says, **"Tell me more."**

Please take a few moments to provide your insights if asked.

Fertigation When Times Are Tight

December 7, 2022

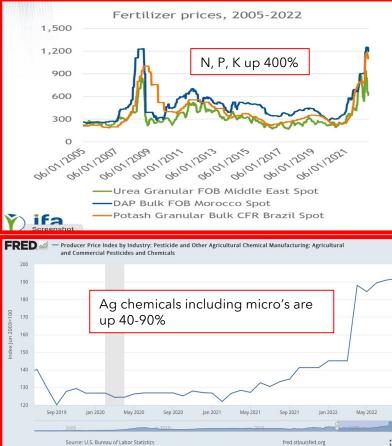
Moderator: Sebastian Saa (ABC) Speakers: Patrick Brown (UC Davis) Tommy Bottoms (Timothy and Viguie Farming & El Molino Farms)

Session Details

Fertigation When Times Are Tight

Moderator Sebastian Saa, ABC, Session Moderator

Speakers


Patrick Brown, Distinguished Professor, University of California, Davis Almond Nutrition: Doing More with Less

Tom Bottoms, Manager and Partner, Timothy and Viguie Farming & El Molino Farms Farm Level Fertigation: How do You Ensure a Successful Fertigation?

Almond Nutrition Doing More with Less

Patrick H Brown, Department of Plant Sciences, University of California, Davis

Rising Costs Low Prices

Turning of the tide

Global shipping rates have fallen from their September peak following an unprecedented surge in the wake of the pandemic. (global container freight index - Freightos Baltic Index, \$US)

Managing Nutrients For Almonds In Tough Times

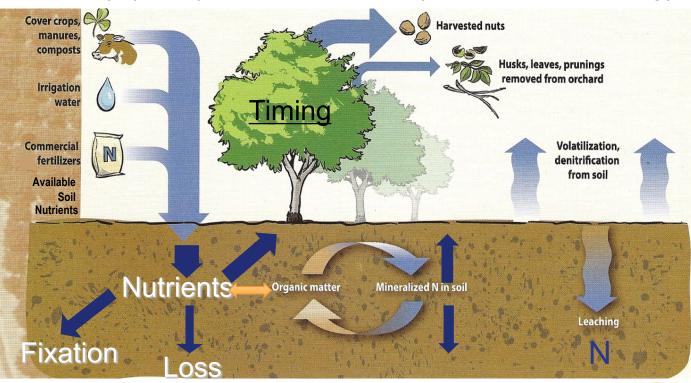
Macro Nutrients

→ ● <u>Nitrogen</u>

Phosphorus

- **→ ●** <u>Potassium</u>
 - Calcium
 - Magnesium
 - Sulfur

- Zinc
- Iron
 - Boron ←


Micro Nutrients

- Manganese
- Copper
- Chlorine
- Nickel
- Molybdenum

- Always Manage
- Monitor and Manage, Prevent/React
- Solated occurrence (Monitor)
 - Unknown

Optimizing Nitrogen and Potassium in Almond. Nutrient Budget Approach

N= 68 lbs/1000 lb yield K = 80 lbs/1000 lb yield + tree growth demand

UCDAVIS DEPARTMENT OF PLANT SCIENCES

Kathy Kelley-Anderson et al: ANR Pub # 21623

Efficient Nutrient Management Approach -the 4 R's- IPNI

Applying the Right Rate

- · Match supply with tree demand
 - Determine tree demand
 - Consider all inputs- fertilizer, organic N, water, residual soil N.

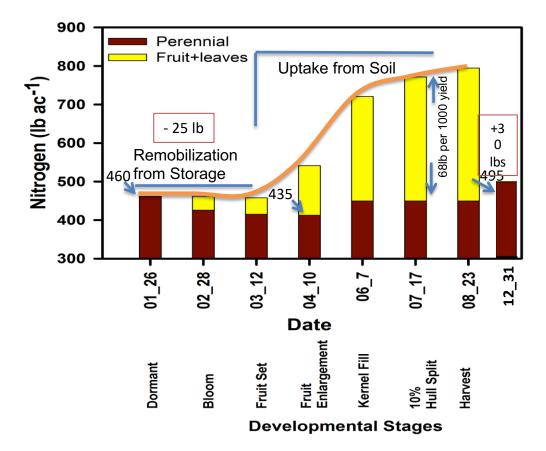
At Right Time

- Apply coincident with root uptake.
- Apply coincident with demand

In the Right Place

- Ensure delivery to the active roots
- Integrate with irrigation/fertigation practice
- Consider orchard variability.

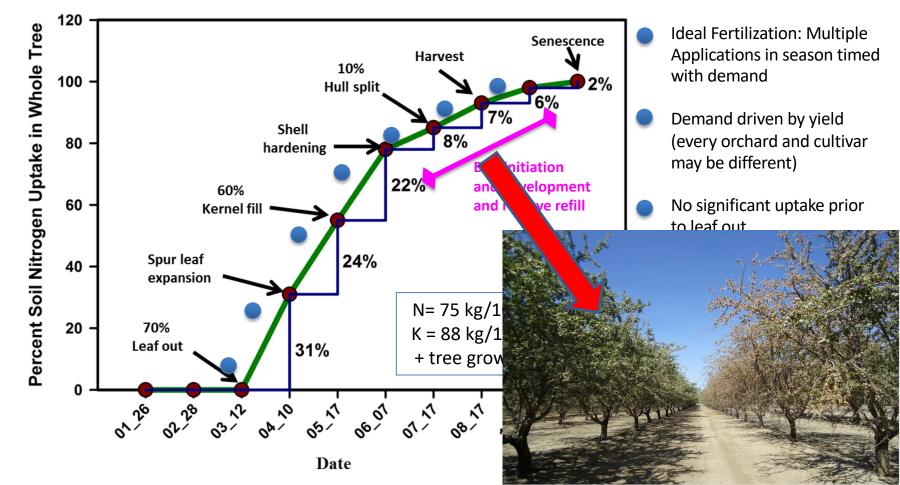
Using the Right Source/Right Balance

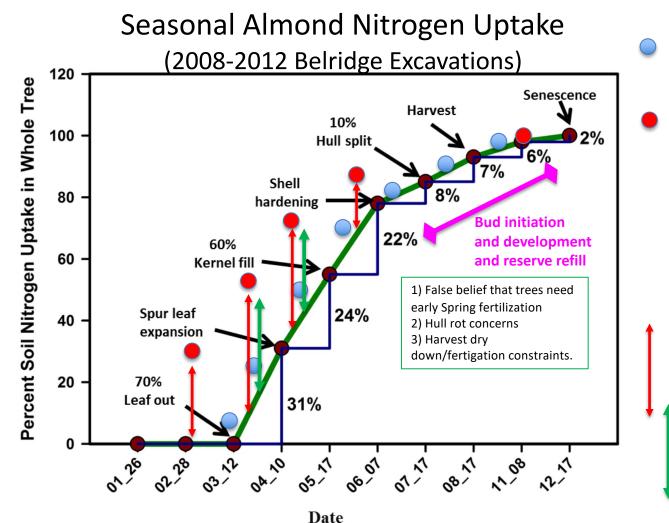

• Eliminate limiting nutrients, minimize leaching potential, stabilize N in root profile....

Total and Annual Dynamics of N in Mature Almond (data from 11-12 year old trees 4,200 lbs.)

Key Principles

From dormancy to mid-leafout there is very little N uptake. Uptake commences at mid-leaf out and is essentially complete by hull split.


Perennial N:


25 lbs N remobilized to flowers, early fruits and leaves (bud break till 50% leaf out).

30 lbs acre accumulated in perennial N over the year.

Exported N in harvest averages 75 kgs N per 1000 kgs of harvested kernels.

Seasonal Almond Nitrogen Uptake

Ideal Fertilization: Multiple Applications in season timed with demand

Common Fertilization: 3-4 applications 80-90% complete by June 1 (added complexity in wet years)

Potential for loss of N -Nitrate in soil/irrigation

Potential for excess canopy vigor -N uptake in excess of fruit demand

CA Almond Board Nitrogen: New Numbers

Tree and Yield Progression with Orchard Age														
Age years	Total Non-Yield Nitrogen Demand leaf + woody biomass	Nitrogen Demand for Yield kernel lbs.	120 100 100 100 100 100 Harvest Hull split Harvest 6% 5hell hardening 60% Kernel fill 40 5pur leaf expansion 24% 31%											
1	30	0	Shell 1%											
2***	55	0	et 60% - 60 - 60% Kernel fill - 22%											
3	65	Expected yield x 0.068												
4	55	Expected yield x 0.068	40 - Spur leaf expansion 24%											
5	45	Expected yield x 0.068	5 5 1 1 1 1 1 1 1 1 1 1											
6	40	Expected yield x 0.068	Leaf out 31%											
7 – 15	40	Expected yield x 0.068	01 02 03 04 05 06 01 08 N' N'											
16 – 25	30	Expected yield x 0.068	Date											

Fields are variable, how do you choose the correct yield based N rate?

Years differ in

Zones differ in

Cultivars differ in

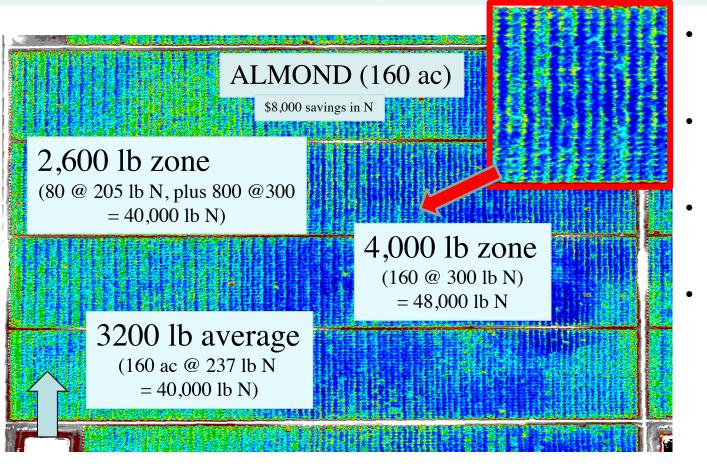
But...one fertigation

cultivar specific) and...

system per field (or

foliars are applied

mixing products.


uniformly to all as a

consequence of tank

productivity

productivity

productivity.

GNDVI 29 April 2009: SmartImage (B,G, NIR only)1 m pixel (Britz Fert. Com.)

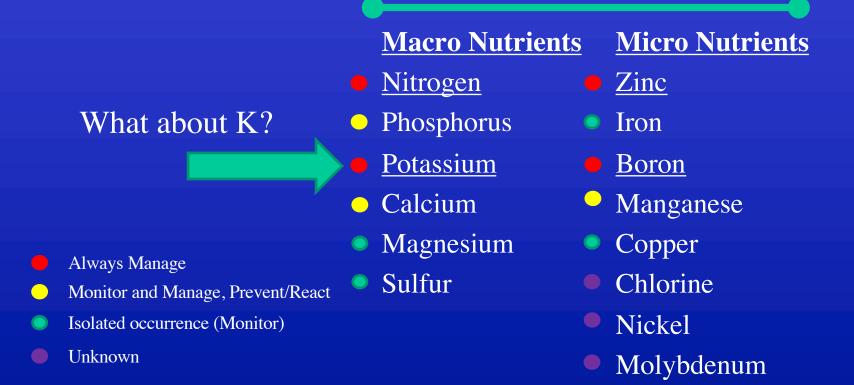
Optimizing N use efficiency requires Optimal Management of all Inputs: e.g. Zinc deficiency can limit crop response to N

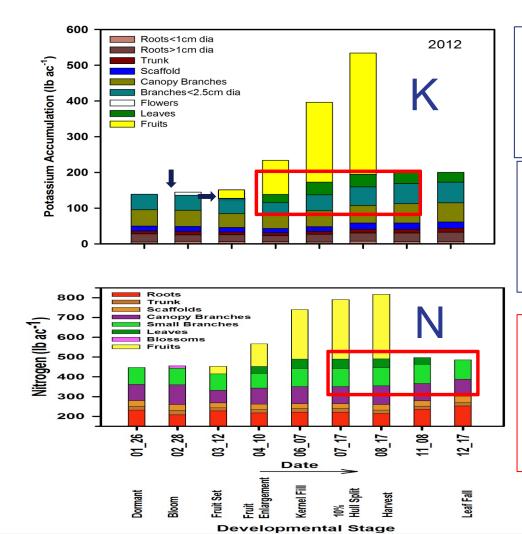
Zinc deficient section

Elements that directly affect N use efficiency: K, Zn, Fe, Mn, Ni, Mo: Water infiltration.....

Uniformity of the Field or Site-Specificity of Management is the Key to Efficiency

(we will come back to this)


Strategies for Nitrogen Decision Making


- 1. Always have a cultivar specific yield driven fertilization strategy
 - 1. requires prediction and inseason adaptation
- 2. In-field yield variability should be identified and corrected.
 - 1. Investment in correcting local nutrient deficiencies
 - 2. Fertigation system optimization
- 3. Nitrogen is not retained well between seasons in low OM soils
- 4. A uniform field N rate cannot be efficient.

GNDVI 29 April 2009: SmartImage (B,G, NIR only)1 m pixel (Britz Fert. Com.)

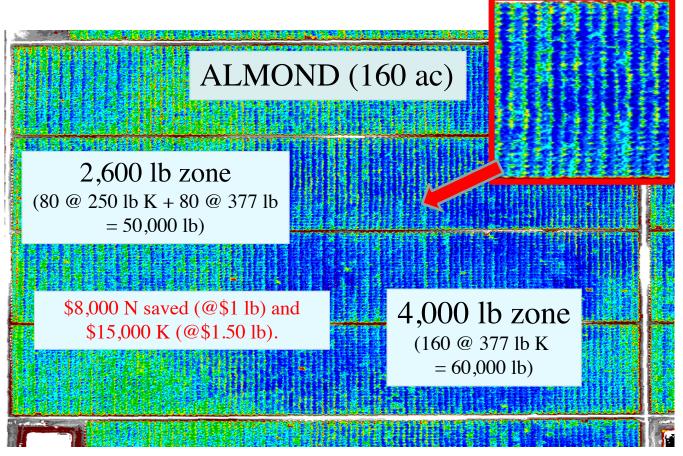
Essential Nutrients

(Lifecycle cannot be completed in their absence)

K uptake commences a little earlier, stored K pool is smaller than N, but uptake is significantly greater in late fruit development. K storage occurs earlier than N

Nutrients in removed fruit N = 68 lb/1000 kernel yield + growth K = 77 lb/1000 kernel yield + growth K demand for growth and storage is lower than N.

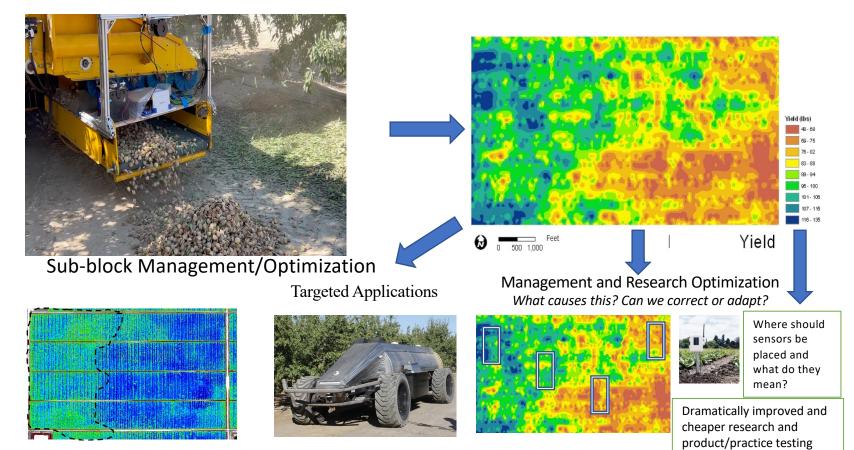
Potassium Questions:


-K is expensive, are we using it efficiently? -Is SOP banding the right approach in predominantly micro/drip irrigated orchards

- K is WAY more variable than N!

- K is however, not lost from system

What about Potassium Variability?? As bad as Nitrogen? Same Consequence?



• Yield determines both K and N demand.

- Cultivars and zones differ in productivity and hence demand.
- Unlike N, excess K is not 'lost' but remains in the system for future use.
 - Reducing K applications in these areas is possible
- Measuring and interpreting soil and tissue K is more difficult than any other element.

GNDVI 29 April 2009: SmartImage (B,G, NIR only)1 m pixel (Britz Fert. Com.)


Yield Mapping Enables Precision Ag

Almond Yield (lbs/tree) - Nonpareil Almond Yield (lbs/tree) - Wood Colony

Yield Map

65 acres, 75 single tree yields pre cultivar

Location: Madera, CA

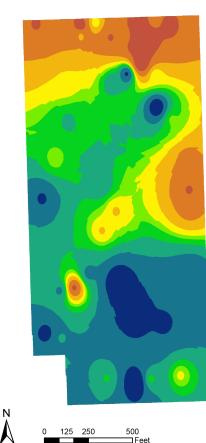
Kernel Ibs

10 - 16

17 - 19

20 - 21

22 - 21


22 - 22

23 - 22

23 - 24

25 - 27

28 - 35

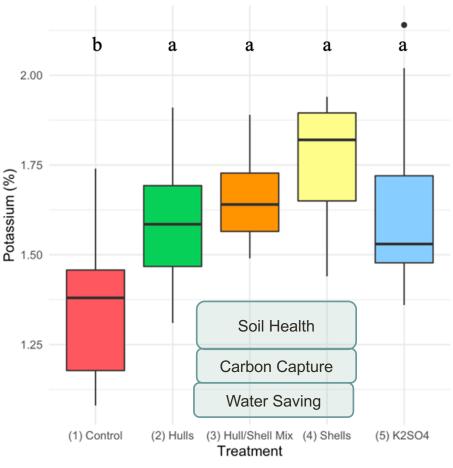
Location: Madera, CA

2800 lb ac Field average Zones range from 1950 – 3950 lb ac Ν

POSTER 69

Almond hulls & shells as potassium-rich organic matter amendments

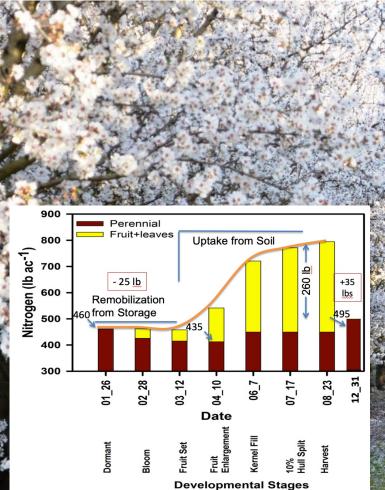
Ellie Andrews Horticulture & Agronomy Graduate Group University of California Davis Doctoral Exit Seminar


Hulls and Shells Provide Plant K

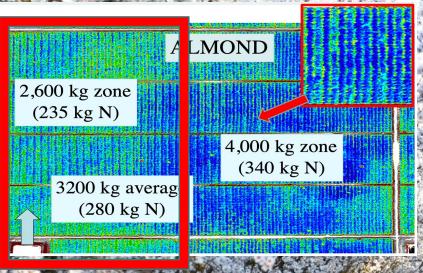
Recycling Almond Fruit (4 ton)

~68% orchard K annual demand, 20% annual N demand \rightarrow hulls & shells

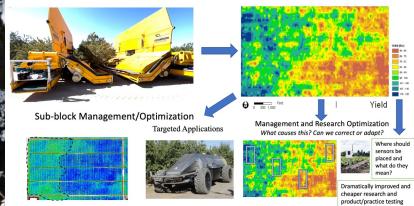
-at current prices that is \$300 in K and N alone -added soil health, water retention, regenerative. Average Leaf Potassium Concentrations Crown Nut Co. July 2022


Essential Nutrients

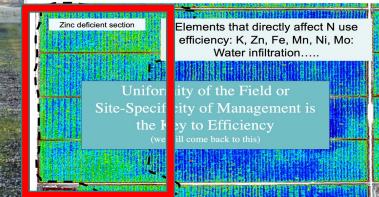
(Lifecycle cannot be completed in their absence)


Unknown

Summary: **Almond Nutrition** Doing More with Less



- Use yield based application rates and growth curve based application timing.
- Uptake commences only after mid-leaf out
- Ensuring good spring reserves is essential (bud development and fill is from hull split to just post-harvest)
- Avoid excessive early applications, avoid losses.
- Maintaining tree health during harvest is critical
- There is limited new uptake post-harvest but leaf health is important for N remobilization.



Off ground Harvesting Enables Yield Mapping and Precision Ag

- Variability in yield is a major cause of inefficiencies. Managing the whole orchard to satisfy the hungriest trees is inefficient.
- Cultivars should be managed separately
- Zonal variability should be identified and managed. Micronutrient correction may be cheaper than extra N or K.
- Yield mapping is a critical technology for nutrient optimization.

Optimizing N use efficiency requires Optimal Management of all Inputs: e.g. Zinc deficiency can limit crop response to N

Pictures

Amendment materials applied at Crown Nut Co February 2020

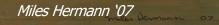
Hulls

Mix

Shells

Almond hulls & shells as potassium-rich organic matter amendments

Ellie Andrews Horticulture & Agronomy Graduate Group University of California Davis Doctoral Exit Seminar



7/27/2020 Shells (left) and hulls (right) 1 week before the sweepers started, Crown Nut Co.

Var

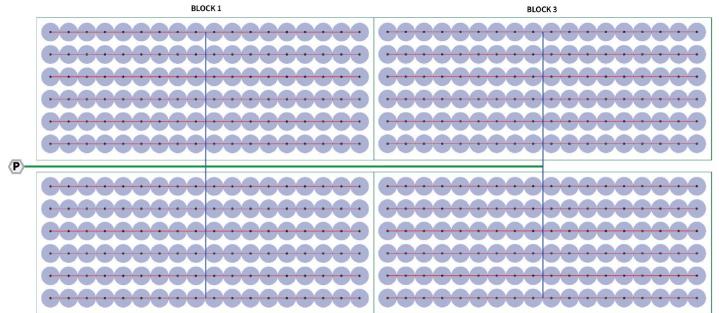
200

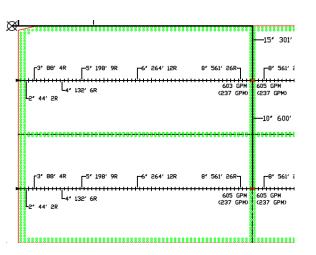
FARM LEVEL FERTIGATION

DEC 7 / TOM BOTTOMS, TREMONT FARMS, LLC

FERTIGATION 101

Video plays here


HOW DO YOU ENSURE A SUCCESSFUL FERTIGATION?


- 1. Study your irrigation system
- 2. Determine tree demand
- 3. Develop a management team
- 4. Adopt a progressive approach

YOUR (DESIGNED) IRRIGATION SYSTEM

- 1. Distribution uniformity: your fertigation is equal to or less uniform than your irrigation system
- 2. Starts with knowing your irrigation system design
 - Pressures
 - Expected output

SYSTEM NOTES
(DRIP)) 22X15 ALMONDS 132 TPA 13,2 GPM/ACRE 0.1 GPM/TREE 0.029 IN/HR 0.7 IN/24 HOURS
UNIRAM 18 MM, 30″ SPACING @ 1,00 GPH

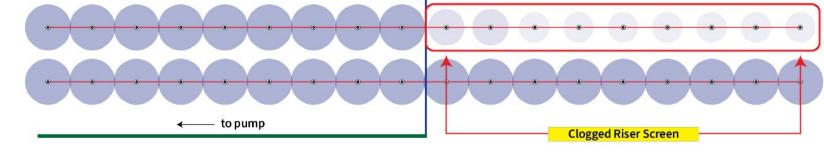
Photo source: ABC Uniformity and Leaks Presentation

YOUR (ACTUAL) IRRIGATION SYSTEM

- 1. How is your system performing?
 - Measure pressure (automated or by hand)
 - Measure output in the system
- 2. Sample water to determine nutrient input
- 3. Discovering problems

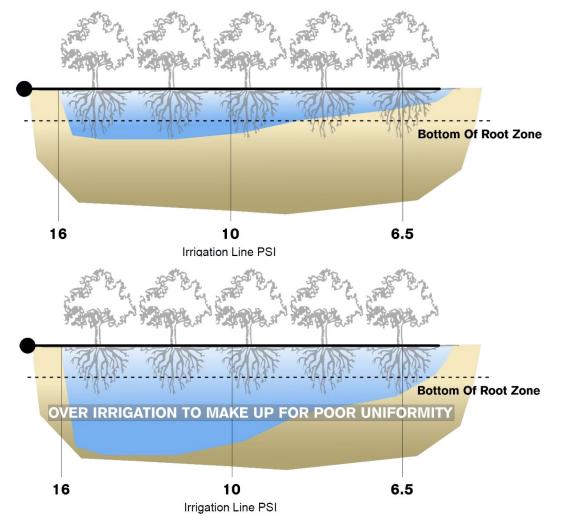
Missing sprinkler .87 GPM 52.2 GPH 46,771 gal per irrigation season

Improper repair .21 GPM 12.6 GPH 11,290 gal per irrigation season

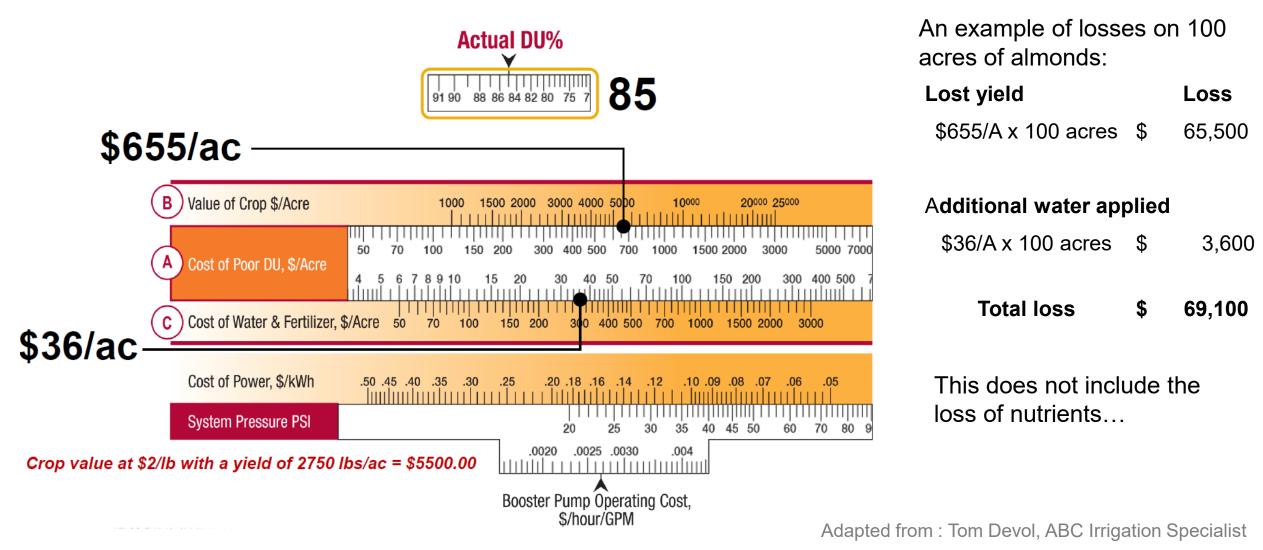

Leaks at filter .61 GPM 36.6 GPH 20,773 gal per irrigation season

Plugged screen Loss of 12 PSI in system pressure

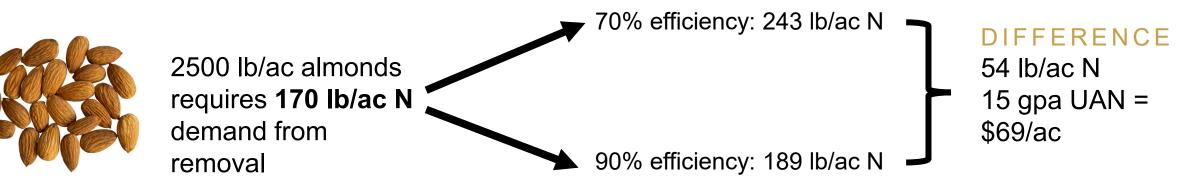
Source: ABC Uniformity and Leaks Presentation



SEEK REMEDIES



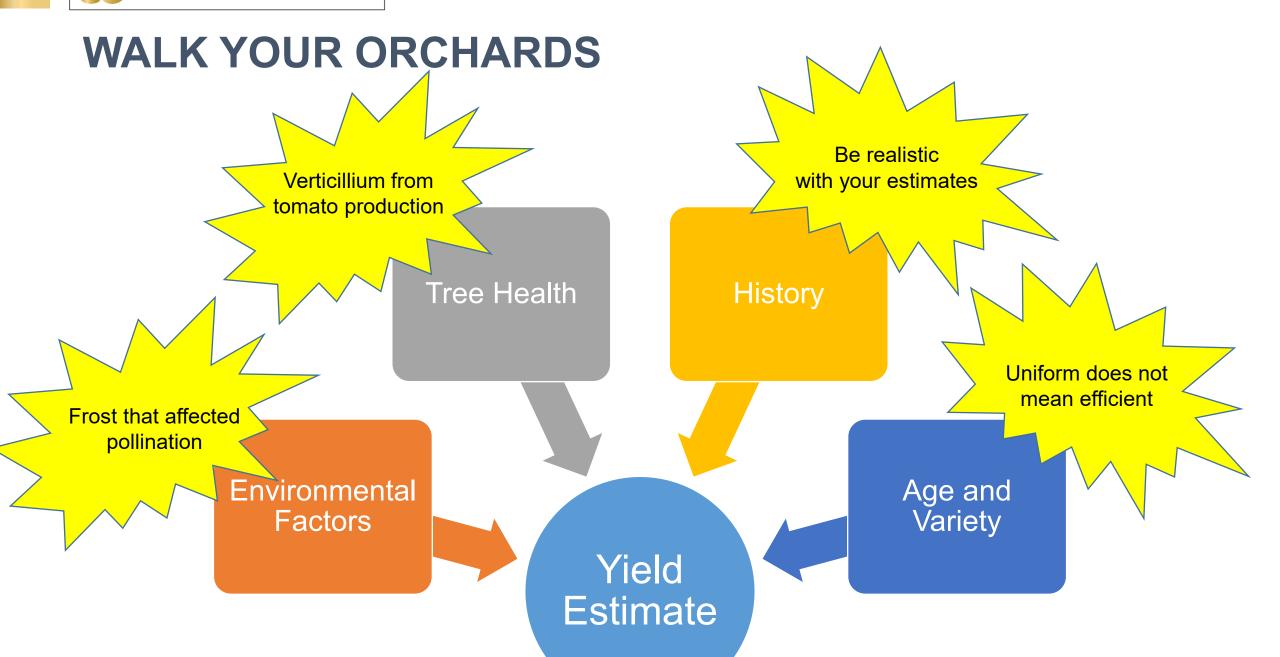
DU Photos: Tom Devol, ABC Irrigation Specialist



COST OF POOR DISTRIBUTION UNIFORMITY

COST OF INEFFICIENT NUTRIENT APPLICATIONS

OPPORTUNITY COST

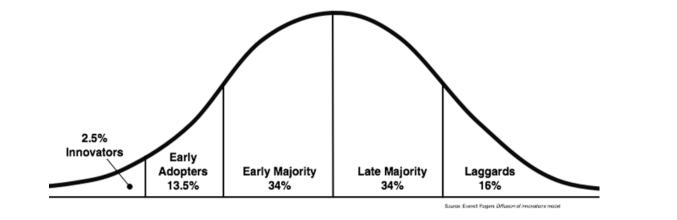

If that same 54 lb/ac N was applied effectively to the orchard it could potentially result in 800 lb/ac almonds.

At \$1.50/lb almonds, that could result in an increase of \$1200/ac.

Do not cut fertilizer just to cut, but think about how to increase your efficiencies.

Slide Credit: Devin Clarke, Yara North America

DEVELOPING A MANAGEMENT TEAM


1. Covering the "what"

- Responsible for feeding the plant
- Significant portion of the budget is in their hands

2. Getting into the "why"

- Drive around and look at other orchards- both good and bad
- Every task eventually leads to a successful harvest
- Sense of ownership
- 3. Then comes the "how" with training, time, and trust

EVOLUTION OF A SYSTEM

Daily paper schedules Weekly paper schedules

000

Weekly spreadsheets Google docs trial

100% online

• Automation

W 8/15 Th 8/16 F 8/17 Sat 8/18 Sun 8/19 M 8/20 T 8/21 W 8/22 Th 8/23 2hrs 2hrs 4														W/E Date									
	W	8/15 Th	8/16 F	8/17	Sat 8/18	SUN 8/19	M 8/20 T	- 8/21	W 8/	22 Th 8/23							0-0-12			UN32		ACID	OTRA
1	5	Ø	21	ivs D		4 hrs	2 mm Z			Zhrr						Libras	Galones	Pulgadas	Libras	Galones	Pulgadas	Libras	
1	6 Z h.	3	24	irs o		4 hrs	2	inrs		2 4.5		Field	Pumps	Crop	Acres								
	12 1	har IDIN	121	w (V		1/2 N	1/2 NU Bhrs										0-0-28	-		UN-32	_		
1	7 Zhu	15	24	5		12 hrs	Bhrs	V				222	222	Tomato	15	25	125	4	20	86	3		
13	A							# 33	A			223	223	Tomato	25	35	292	9	20	143	5	PROTECTION AND AND AND AND AND AND AND AND AND AN	
130	BZhr	5	21	115		Zhus		# 33 215 7/8	601.								Pot Carb			UN32			
		13hrs		1	13 hus			.) 0,				103	102	Almonds	75	15	304	10	10	214	7		
131		1.1 hrs	- 29	1	(I has												0-0-28			CAN-17			1.
1318	Zhra		D		0			- 1				180A-B	180	Melons	18	20	103	3	10	82	3	-	
140			2.h	~3		+12hrs lowe			A			180C-D	180	Melons	18	20	103	3	10	82	3	-	16
141		18 4.	3 (2)		10 hrs			T	# 33-B								КТЗ			CAN-17	-		
									#33-B 215.6el 7/8/19			126	125	Peppers	38	15	518	17	15	259	8		
142		It no	3 11		19 hrs			a r				131	130	Peppers	75	20	1364	44	20	429	14		
143	2		9		E		· · · · · ·	and a				143	140 & 143	Peppers	35	15	477	15	15	150	5		1 - Contraction
153	2 his	This	@ Ynn	5 0	1 8-3	Lifbers	a start		A			153	153	Peppers	45	20	243	8	20	409	13		
100	-		*	F	inve				#33.8 215 fed.			182	181	Peppers	23	20	153	5	20	209	7		New States
154	Illus	6hus (si	m) lethrs			13 hvs	- Aller	- 0	7/10/19								•	•	•	ł	•		
155		PCHARD IRRI	2	Q.	IFET			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1													

BEYOND THE SCHEDULES

- 1. After the irrigation schedules and fertilizer amounts, the art of fertigation begins.
- 2. Check list
 - Determine fertilizer run times
 - Start pump
 - Check leaks and pressures
 - Calculate, measure, check again
 - Execute application
- 3. Monitor tank levels

ISSUES FACED

- 1. Equipment in the field
- 2. Irrigation system is not up to standard
- 3. Equipment failures (timers, pumps)
- 4. Pressure on crew
- 5. Training materials
- 6. Calculating rates and amounts
- 7. Just getting started

CONTINUOUS IMPROVEMENT

- 1. Understand crop demand
- 2. Move towards continuous fertigation (high frequency/low volume)
- 3. Must either develop a solid team, automate, or both
- 4. Improve estimation of tree yield
- 5. Do not cut just to cut. Recognize your opportunity cost.
- 6. If automation is part of the solution, it must be made cheaper and easier to implement.

HELPFUL RESOURCES

- 1. Fertilizer Research and Education Program (FREP)
- 2. ABC materials
- 3. Cal Poly IRTC
- 4. Other farmers
- 5. Seasoned staff
- 6. Experts in the field
 - Devin Clarke, Yara North America
 - Cory Broad, Jain Irrigation
 - Nick Edsall, Bullseye Farms
 - Geoff Klein, Bullseye Farms
 - Ryan Hackett, Gold Leaf Farming
 - Scott Rominger, Rominger Farming, Inc.
 - Jerome Pier, QualiTech

YEARS of The Almond Conference

WHAT DID YOU THINK?

Scan the QR Code below and answer 4 short questions to help us in planning future presentations.

THANK YOU

