

Special Grower Breakfast Session: Managing Input Costs

December 8, 2022

Moderator: Michael Roots (ABC) Speakers: Josette Lewis (ABC) Peter DeBoer (Yara) Justin Nay (Integral Ag., Inc.) Lucas Avila (Manulife Investment Management) Brittney Goodrich (UC ANR)

Peter DeBoer

Yara North America

P

. .

Planet Earth – In chaos since 2020

Spring 2020 – COVID-19 Massive Supply Chain Disruption Summer 2020 – Tariffs on fertilizer imports Especially problematic for the Western US Fall 2020 – China stops fertilizer exports Winter 2021 – European natural gas spikes & stays high Winter 2022 – Russia/Ukraine conflict

Impacts of globalism

Winter 2022 – Russia/Ukraine conflict

Russian fertilizer ex	ports and ma	arket share in 2021	
Product	Tonnage	Export market share	Export market rank
MOP	11,832,717	27%	3rd
Ammonium nitrate	4,313,229	49%	1st
Urea	6,999,814	18%	1st
NPKs	5,928,142	38%	1st
Ammonia	4,424,342	30%	1st
DAP/MAP	4,048,081	14%	4th
Sulphur	1,805,567	9%	3rd

Where we stand today...

- Massive inflation, including record high food costs
- Higher costs & transit times for global & local logistics
- Steep increases in European natural gas
- Labor shortages
- Strong dollar relative to other currencies
- Declining crop values (and yields in the west)

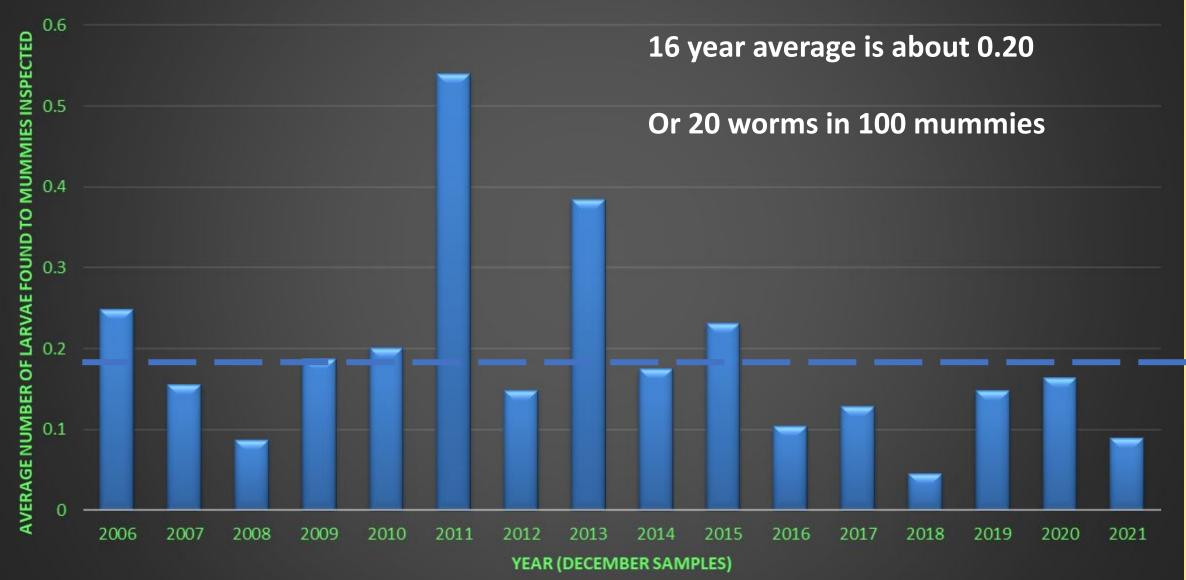
What can we do?

- Maximize your productivity
- Ask lots of questions
- Leverage new technologies and approaches
- Stay focused on the long term
- Stay positive

Justin Nay

Integral Ag Inc.

How to get more out of your NOW budget



Justin E Nay, PhD Integral Ag., Inc. Chico, CA

Yearly Navel Orangeworm mummy infest ratio all varieties combined

NOW math 101

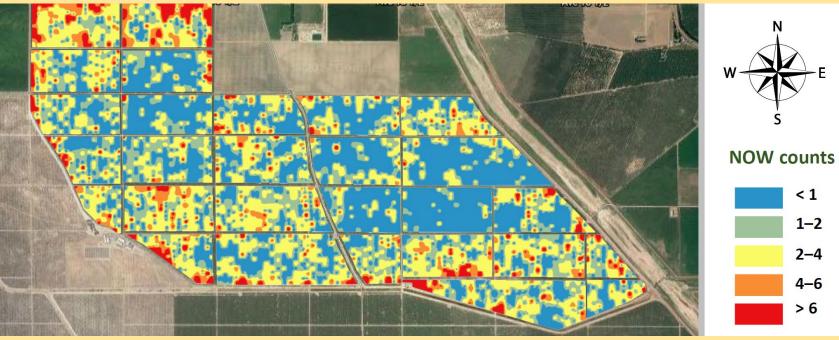
2 mummies per tree 100 trees per acre 0.2 worms per mummy = 40 worms per acre (20♀)

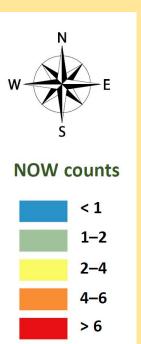
140 trees per acre @ 2 mummies per tree and 0.2 infest = 28^{\bigcirc} / acre

Three Step Process

Step 3. Calculate moths (females) per acre

To perform Step 3, enter number of NOW larvae found in orchard samples							
	Enter 1 if n	one found					
	Total worms (meats and hulls)	# of nuts inspected	Cal	culated infest worms per acre per variety			
Enter number of NOW larvae in mummies (Var. 1)	63	100		83.2			
Enter number of NOW larvae in mummies (Var. 2)	14	100		5.3			
Enter number of NOW larvae in mummies (Var. 3)	26	50		3.6			
Enter number of NOW larvae in mummies (Var. 4)	1	1		0.0			
	Total wor	ms per acre		92.1			
	Total female	NOW per acre		46.1			


These calculations can assist in a more efficient allocation of resources on sanitation based on **NOW infest and variety**.



More in a Peterson trap is not better!

Sure its better ROI for the cost of the trap but it means you are pushing the system to far

<1

1-2

2 - 4

4-6 > 6

2017 & 2018

2 traps per acre

Attempt to put up 1 trap for every 6 NOW $\stackrel{\bigcirc}{\rightarrow}$ per acre

Lots of assumptions like 2000 pound + of 22-24 nut / oz normal flight timing early harvest

Better ROI on your NOW management decisions

1) Sanitation – \$ to kill moths, mummy nuts are second 2) Spring Population Size - \$ to spray or not to spray 3) Mass Trapping – assist sanitation, provide info on population size, kill moths

Thank you. Math class is over.

Maximizing Profitability in Almond Production

Brittney Goodrich, UC ANR

AGRICULTURAL AND RESOURCE ECONOMICS

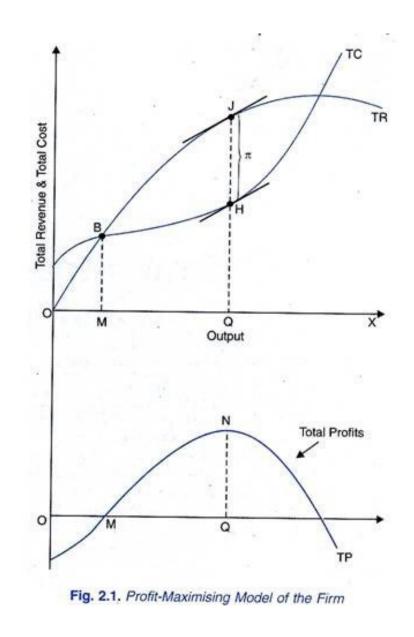
Profit maximization in theory

$$\max_{e, t_H, t_L} E[\pi] = p(e)(Py_H - t_H) + (1 - p(e))(Py_L - t_L) - \alpha_i \quad s. t.$$

$$p(e)[1 - \exp(-At_H)] + (1 - p(e))[1 - \exp(-At_L)] - ce - F \ge 0, \quad (\lambda)$$

$$p'(e)[\exp(-At_L) - \exp(-At_H)] - c = 0, \qquad (\mu)$$

$$P\Delta y = (t_{H}^{*} - t_{L}^{*}) + \frac{\mu^{*}p''(e^{*})c}{(p'(e^{*}))^{2}},$$


$$t_{H}^{*} = -\frac{1}{A}\ln\left[(1 - ce^{*} - F) + \frac{p(e^{*})c}{p'(e^{*})} - \frac{c}{p'(e^{*})}\right],$$

$$t_{L}^{*} = -\frac{1}{A}\ln\left[(1 - ce^{*} - F) + \frac{p(e^{*})c}{p'(e^{*})}\right],$$

$$\mu^{*} = \frac{p(e^{*})(1 - p(e^{*}))}{Ap'(e^{*})}\left[\left((1 - ce^{*} - F) + \frac{p(e^{*})c}{p'(e^{*})}\right)^{-1} - \left((1 - ce^{*} - F) - \frac{(1 - p(e^{*}))c}{p'(e^{*})}\right)^{-1}\right],$$

$$1\left[\frac{1}{2}\left(\frac{1}{2}\left(1 - ce^{*} - F\right) + \frac{p(e^{*})c}{p'(e^{*})}\right)^{-1} - \left((1 - ce^{*} - F) - \frac{(1 - p(e^{*}))c}{p'(e^{*})}\right)^{-1}\right],$$

$$\lambda^* = -\frac{1}{A} \left[(1 - p(e^*)) \left((1 - ce^* - F) + \frac{p(e^*)c}{p'(e^*)} \right)^{-1} + p(e^*) \left((1 - ce^* - F) - \frac{(1 - p(e^*))c}{p'(e^*)} \right)^{-1} \right].$$

Profit maximization in practice

Even more complicated!

Tools to help evaluate profitability:

- UC Davis Cost and Returns Studies
 - Enterprise budgets
- Partial budget analysis: Evaluate changes in a practice

UC Davis Cost and Return Studies

Agricultural & Resource Economics

UCDAV	15	- · ·	Y			
	Current Studies	Archived Studies	Tree and Vine Loss Calculators	Conservation Practice Studies	Cow/Calf Budget Calculators	
Contact Us	Home > Current Studie	es > Almonds				
Donald Stewart (530) 752-4651	Current Co	ost and Retu	ırn Studies			
<u>Jeremy Murdock</u> (530) 752-4651			table, field, tree and vine crops, and		, , , , , , , , , , , , , , , , , , ,	
Brittney Goodrich (530) 752-1529		5	eive notice of new cost study re / Commodity, Location, or Yea		o <u>cost studies-subscribe@primal.u</u>	<u>icdavis.edu</u> .
Daniel Sumner (530 752-1668	Commodi	ity	Region Drganic All regions 🗸	County Year All counties All years	Show All	
Site Map	Ł.					

Giving

ter current studies using the map of California

Current Studies with Almonds

Commodity 🔺	Region \$	County \$	Year 🔻	Production Conditions \$
Almonds [pdf]	San Joaquin Valley North	<u>see map</u>	2019	Establish and Produce Almonds, Micro-Sprinkler Irrigation
Almonds [pdf]	San Joaquin Valley South	<u>see map</u>	2019	Establish and Produce Almonds, Double-line Drip Irrigation
Almonds [pdf]	Sacramento Valley	<u>see map</u>	2019	Establish and Produce Almonds, Micro-Sprinkler Irrigation
Almonds [pdf]	San Joaquin Valley North	see map	2016	Organic, solid set sprinkler irrigation

For questions regarding the cost study releases, contact Don Stewart, (530) 752-4651, destewart@ucdavis.edu

Scan with smartphone camera to visit cost studies website https://coststudies.ucdavis.edu/

Almond Cost Study Updates

Since 2019:

- Prices down ~30%
- Input prices up**
 - Machine labor: ~4%
 - Non-Machine Labor: ~29%
 - Nitrogen: ~171%
 - Insecticides: ~39%
 - Herbicides: ~127%
 - Fuel: ~48%
- Tighter margins mean maximizing yield may no longer be optimal

**Estimated from current prices in other cost studies in progress

TABLE 3. COSTS AND RETURNS PER ACRE TO PRODUCE ALMONDS San Joaquin Valley-South 2019

	Ouantity/		Price or	Value or	r Your	
	Acre	Unit	Cost/Unit	Cost/Acre	Cost	
GROSS RETURNS		U.I.I.				
Almonds	3,000	Lb	2 50	7,500		
TOTAL GROSS RETURNS				7,500		
OPERATING COSTS						
Herbicide:				36		
Matrix SG	1 50	Oz	14 39	22		
Gramoxone SL	3 00	Pint	3 00	9		
Roundup PowerMax	1 40	Pint	3 75	5		
Fungicide:				250		
Liquid Copper Spray	2 00	FlOz	0 87	2		
Bravo Weather Stik	4 00	FlOz	0.45	2		
Quash	7 00	FlOz	10 00	70		
Vanguard WG	10.00	Oz	4 95	50		
Pristine	14 50	FlOz	3 40	49		
Luna Sensation	10.00	FlOz	7 75	78		
Insecticide:				170		
Zeal	3 00	FlOz	20 75	62		
Intrepid 2F	24 00	FlOz	2 25	54		
Altacor	4 00	FlOz	10 61	42		
Clinch Rodenticide:	1 00	Lb	11 80	12		
Vertebrate Pest Bait	4 50	Lb	1 92	9		
Custom:	4 50	LO	1 92	1,001		
Pruning (Hand) and Stacking	1 00	Acre	120.00	120		
Shred Prunings	0 25	Hour	110 00	28		
Pollination Fee	2 00	Hive	200 00	400		
Irrigation Pump Test	0.01	Each	200 00	400		
Soil Analysis	1 00	Acre	200 00	2		
Leaf Analysis	2 00	Acre	2 25	5		
Hull Analysis	1 00	Acre	1 00	ĩ		
Hand Poling	4 00	Acre	50 00	200		
Hull/Shell Nuts	3.000 00	Lb	0 07	210		
PCA/CCA Fee (Prod Yrs.)	1 00	Acre	35 00	35		
Irrigation:				1,277		
Water SJV south	58.00	AcIn	22 00	1,276		
Water Analysis	0 02	Each	50 00	1		
Fertilizer:				391		
UAN32 (32-0-0)	250 00	Lb N	0.45	113		
KTS (0-0-25) 25% w/17% Sulfur	400 00	Lb	0 36	144		
Potassium Sulfate (K2SO4)	200 00	Lb	0 49	98		
10-34-0 (Ammonium Phosphate)	117 66	Lb	0 30	35		
Zinc Sulfate 36%	1 00	Lb	0.95	1		
Labor:				586		
Equipment Operator Labor	12.33	hrs	25 51	315		
Irrigation Labor	7 25	hrs	17 72	128		
Non-Machine Labor	8 07	hrs	17 72	143		
Machinery:	2.67		2.62	200		
Fuel-Gas	2 57	gal	3 63	9		
Fuel-Diesel	32.98	gal	3 95	130		
Lube Mashinary Papair				21 39		
Machinery Repair						
Interest on Operating Capital @ 5.25%				67 45		
TOTAL OPERATING COSTS/ACRE				3,987		
TOTAL OPERATING COSTS/LB				1 32		
NET RETURNS ABOVE OPERATING COSTS				3,513		

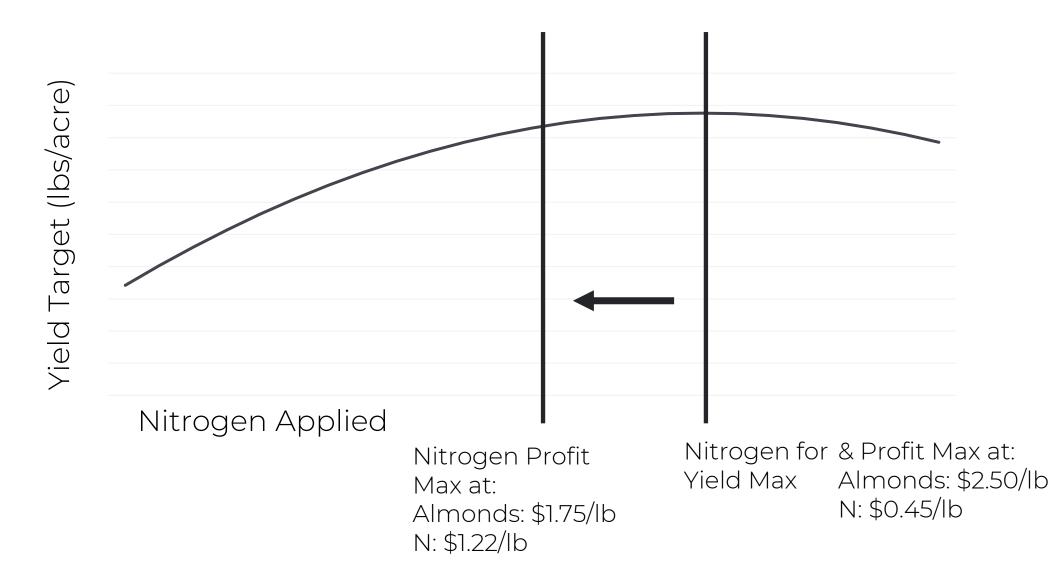
Partial Budget Analysis

Alternative being considered: **Additional Revenue Additional Costs Reduced Costs Reduced Revenue** \$ \$ Total additional costs and reduced revenue Total additional revenue and reduced costs **Total Net Change in Profit** \$ **Per-Acre Net Change in Profit** Ś

Partial Budget Analysis

Alternative being considered: Decrease target yield from 4,000 lbs/acre to 3,500 lbs/acre

Additional Costs	Additional Revenue	
Reduced Revenue	Reduced Costs	
Reduced yield (500 lbs/acre @ expected price)	Fertilizer?	
	Irrigation?	
	Pollination?	
	Harvest	
Total additional costs and reduced revenue \$	Total additional revenue and reduced costs	\$
Total Net Change in Profit		\$
Per-Acre Net Change in Profit		\$ -


Disclaimer: Consider Any Federal Crop Insurance Policies

In 2022: 72% of almond acreage insured by USDA RMA

- Crop insurance policies based on prior years' production or Actual Production History (APH)
 - Reducing target yields will reduce APH and level of yield you can insure in future years
- Also, from USDA RMA Almond Crop Provisions:
 - "You must report...
 - Any change in practices, or any other circumstance that may reduce the expected yield below the yield upon which the insurance guarantee is based..."
- Best to check with your crop insurance agent

Optimizing Fertilizer

Maximizing profit in pest management

In Development: NOW IPM Program Comparison Decision Tool

- Allows for cost/benefit comparison of different NOW IPM Programs
- Assumptions:

Labor Costs

- Machine operator: \$26.46/hour
- Hand: \$22.94/hour

Winter Sanitation Costs

- Shake
- Sweep/blow
- Mow
- Hand pole: 2 hours/acre Total cost: \$309.94/acre

Pesticide Application Costs

- .25 hours/acre at \$20.34 per application
- Avg materials cost: \$56/acre Total per application: \$76.34/acre

Mating Disruption Costs

\$120/acre

<u>Returns</u>

- Price: \$1.76 per lb
- Yield: 2210 lbs/acre
- Premium schedule from Blue Diamond 2022 Crop Delivery Information

Maximizing profit in pest management

Holding Damage Constant

NOW IPM Program 1:

- Winter sanitation
- Pesticide Application-Spring
- Pesticide Application-Hull Split

	IPM 1		IPM 2	
Winter sanitation	\$ 310	\$	310	
Pesticide Application	\$ 153	\$	77	
Mating disruption	\$ -	\$	120	
Total IPM Cost	\$ 463	\$	507	
Percentage Rejects	2.2	1%		2.1%
Almond Price (\$/lb with				
reject premium/discount)	\$ 1.77	\$	1.77	
Almond Yield (lbs/acre)	2,164		2,164	
Total Revenues	\$ 3,830	\$	3,830	

NOW IPM Program 2:

- Winter sanitation
- Mating Disruption
- Pesticide Application- Hull Split

Change from IPM 1 to IPM 2:

Costs: Increase by \$43/acre Revenues: No change Net: Loss of \$43/acre

Maximizing profit in pest management

IPM 2 Less Damage than IPM 1

NOW IPM Program 1:

- Winter sanitation
- Pesticide Application-Spring
- Pesticide Application-Hull Split

IPM 1 IPM 2 \$ \$ Winter sanitation 310 310 \$ \$ Pesticide Application 153 77 \$ \$ Mating disruption 120 \$ Ś **Total IPM Cost** 463 507 Percentage Rejects 2.1% 1.5% Almond Price (\$/lb with \$ \$ 1.79 reject premium/discount) 1.77 Almond Yield (lbs/acre) 2,164 2,177 \$ \$ **Total revenues** 3,830 3,897

NOW IPM Program 2:

- Winter sanitation
- Mating Disruption
- Pesticide Application- Hull Split

Change from IPM 1 to IPM 2:

Costs: Increase by \$43/acre Revenues: Increase by \$67/acre Net: Gain of \$24/acre

Maximizing profits in pollination

Consider Crop Insurance!

- Failure to use adequate number of bee colonies and/or frames per colony is NOT an insurable cause for loss
- Producer must use *minimum* of two 6-frame colonies per acre (or its equivalent)
 - One 12-frame colony per acre
 - 1.5 8-frame colonies per acre
- Or producer may deviate from minimum IF they verify at least one non-loss year using that number/strength of colonies
 - Flexibility allows for deviation for self-fertile varieties

Alter Hive Density and/or Colony Strength?

But must consider: Will this change yields?

Colony strength category	Hives/Acre	Average Colony Strength Requirement		ination \$/Hive		lination t \$/Acre	Frames/Acre
Low	3 2	4 6	\$ \$	189 195	\$ \$	567 390	12 12
Standard	1.5 1.8 2	8 8 8	\$ \$ \$	200 200 200	\$ \$ \$	300 360 400	12 14.4 16
High	1.2 1.5	10 10	\$ \$	200 212 212		254 318	10 12 15
	2	10	\$	212	\$	424	20

Coming in 2023...

- Updated Almond Cost and Returns Studies
- NOW IPM Comparison Tool
- 2023 Almond Pollination Updated in January Issue of West Coast Nut

Brittney Goodrich Assistant Professor of Cooperative Extension <u>bkgoodrich@ucdavis.edu</u>

Scan with smartphone camera to visit: <u>https://coststudies.ucdavis.edu/</u>

THANK YOU

WHAT DID YOU THINK?

Scan the QR Code below and answer 4 short questions to help us in planning future presentations.

THANK YOU

