2023 THE ALMOND CONFERENCE Connecting the Dots

Merilie

GROWERS // HANDLERS // CUSTOMERS // CONSUMERS

Regenerative, Climate Smart, Organic: What These Mean for Growers and How They Can Add Value

Moderator: Josette Lewis (ABC)

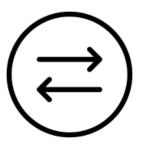
Speakers: Amelie Gaudin (UC Davis), Tanya Gemperle-Goncalves (Gemperle Family Farms), Zac Ellis (ofi), Joe Gardiner (Gardiner Farms)

2023 THE ALMOND CONFERENCE Connecting the Dots

GROWERS // HANDLERS // CUSTOMERS // CONSUMERS

Vindinal 1

Regenerative / Climate Smart / Organic What does this mean and how it can add value?


Dr. Amélie Gaudin Department of Plant Sciences | UC Davis

Modify orchard composition and structure to boost beneficial interactions

Substituting inputs

Focus on replacement of technologies and synthetic inputs

Gains in efficiencies

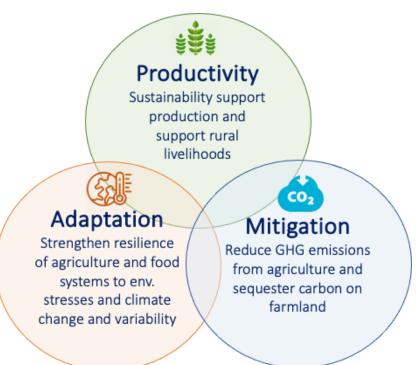
Better use of on-farm and input resources within existing system configurations

Common ground

- Managing for sustainability; beyond just productivity
- Management practices that can provide multiple environmental and public health benefits
- Systems approach
 - Management
 - Outcomes
- Flexibility in implementation, no recipe
- High likelihood of tradeoffs

What does this mean?

Organic



- Pioneer, farmer led movement
- Ecological farming
- Regulated
- Set of approved production practices
- Premium, established markets and certifiers

What does this mean?

Climate – smart

- Policy driven
- Efficiencies Substitutions, shorter term
- Emphasize agriculture as a climate solution GHG
- Conventional / organic systems

What does this mean?

Regenerative

- "New", farmer knowledge
- Redesigns, stacking of practices
- Low to no synthetic input
- Livestock re-integration
- Equity and food justice

1st **level regenerative system** - designed primarily to build soil health, cycle and sequester carbon

A deeper regenerative system – also optimizes for biodiversity and conservation

On its deepest level - supports individuals and communities and strives for equity, reversing decades of extractions

Newton et al 2020. Front. Sustain. Food Syst

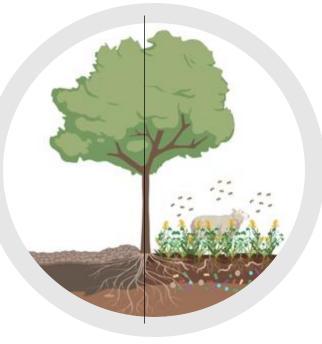
Moving beyond definitions ...

ECOLOGICAL PRINCIPLES

Maximize biodiversity

Maintain living roots

Keep soil covered


Frequent and diverse input of organic matter

Strategic minimal disturbances

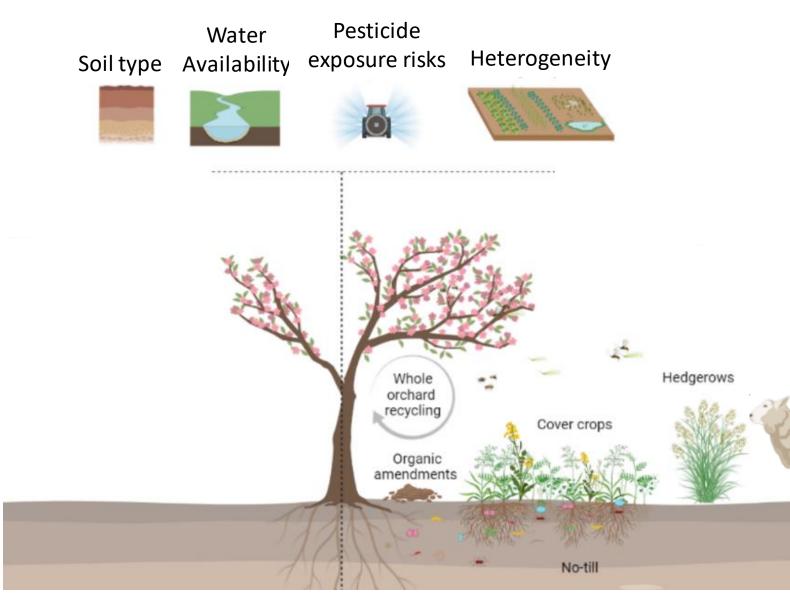
Adaptation to landscape and communities

Rely on biodiversity

- Time
- Space
- Above and belowground
- Living soil ecosystems
- Strategic and limited disturbances

A very large number of papers in the ecology literature since the ~50s!

PRACTICES


- Field margin habitat
- Whole orchard recycling
- Organic amendments and composts
- Understory covers
- Chips/mulches hulls and shells

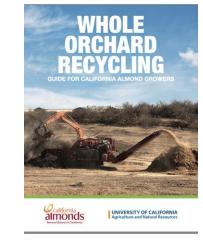
(...)

- Biochars
- Grazers

These systems already exist !

We have a very large unrealized potential in Almond systems

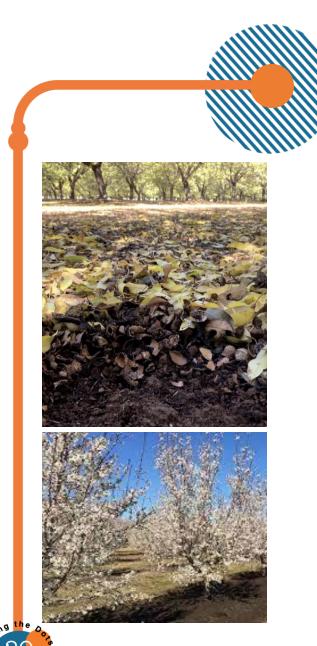
- No till for the most part
- Stable perennial habitat which sequesters carbon
- Multiple designs in space and time are feasible, distinct spatial and temporal niches
- Potential yield lags are minimal compared to annual systems; if well managed
- Cost, but high value specialty crop
- Unique context



\bigcirc How it can add value? Single practices (few out of many...)

Whole Orchard Recycling

After 9 years, compared to burned



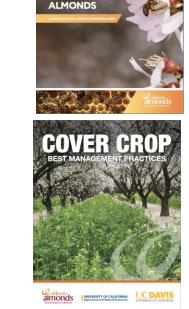
Jahanzad et al_2020, Jahanzad et al_2022, Holtz et al_2017 https://orchardrecycling.ucdavis.edu • Greater water holding capacity (+32% Field capacity)

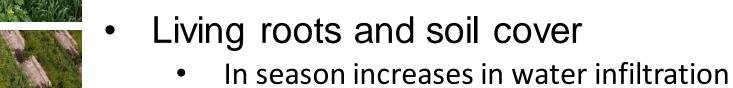
- Improved infiltration rate : 2 folds
- Reduced soil compaction (-%14)
- Improved soil aggregation (+%19)
- Maintain higher tree water status and water use efficiency
- + 20% yield benefits under deficit irrigation
- Reduces nitrate leaching potential by 52%
- No yield tradeoffs if follow fertilization guidelines
- Low pest/disease potential

Leptch et al_2019, Villa et al_202, Khalsa et al_2021 Andrews et al_2023; Andrews et al_submitted

Compost, hulls and shells

After 2-3 years, compared to unamended


- Short term soil fertility
- Relevant sources of nutrients
 - N/P Nutrient management guidelines
 - Hulls and shells = Potassium
- Increases in soil organic carbon
- Associated benefits (CEC, topsoil volumetric water content stem water potential)
- More biological activity
- Hulls and Shells mulch effect : lower soil ²⁰²¹ evaporation; higher water infiltration


Winter planted cover crops

After 4 years, compared to bare soil

- Forage for pollinators
- Weed suppression
- Reduce spring emergence and NOW egg deposition

HONEY BEE BEST MANAGEME PRACTICES FOR CALIFORNIA

- Aggregation (+22%),
- Compaction (-41%)
- Labile C and N pools
- More biological activity , more diverse soil ecosystem
- No increases in SOM or SOC

Wauters et al_2023, DeVincentis et al_2020, Wilson et al_2023, Wauters et al_2024 in prep

How it can add value ? **Stacking in complex systems**

12 organic Almond orchards, Similar soil type and texture (Yolo silt loam) Along a management gradient

None, few or stacked adoption of soil health and diversification principles

Disturbance


- Till
- No till
- Partial

•

Soil cover

None

• Full

Living plants / roots

- Bare
- Winter
- Continuous

Organic matter inputs

- None
- 1

•

2 +

Diversification

- None
- Plants
- Plant + grazing

Marshall et al_under review_Applied Soil Ecology

Soil health data indicates 3 main groups

Cluster A

Bare soil
Recycled almond shell amendment
Winter planted living cover and compost

Cluster B

- Winter living cover of resident vegetation
- Continuous living cover with mixture of planted and resident vegetation

Subset of indicators -- Alley (0-30 cm) --

Cluster C

 Planted winter living cover with animal grazing + compost
Continuous living cover with animal grazing

Service	Indicator	Cluster A		Cluster B		Cluster C	
Lower compaction	Bulk density (g/cm ³)	1.71a	\bigcirc	1.62ab	\bigcirc	1.56b	\bigcirc
Store C	Total soil C (g C/kg dry soil)	8.78a	\bigcirc	13.43b		17.47b	\bigcirc
Nutrient cycling	Respiration (mg CO ₂ /g dry soil)	0.29a	\bigcirc	0.39ab	\bigcirc	0.53b	\bigcirc
	Soil proteins (mg N/g dry soil)	1.81a	\bigcirc	2.01a	\bigcirc	5.89b	
Nutrient availability	Total N (g N/kg dry soil)	0.85a	\bigcirc	1.27a	\bigcirc	1.63b	
	Available P (ppm)	4.64a	\bigcirc	20.12b		57.59c	\bigcirc
Conserve water	Water Holding Capacity (gH2O. g soil)	0.23a	\bigcirc	0.26a	\bigcirc	0.23a	\bigcirc

ORIGINAL RESEARCH published: 10 August 2021 10.3389/fsufs.2021.664359

> Check for updates

Regenerative Almond Production Systems Improve Soil Health, Biodiversity, and Profit

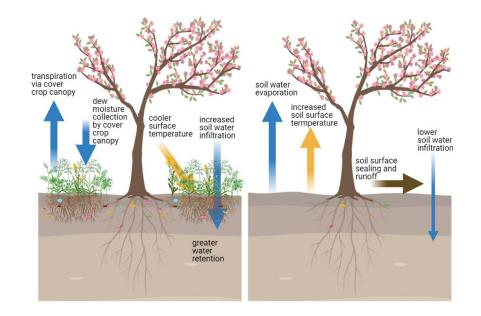
Tommy L. D. Fenster^{1,2}, Patricia Y. Oikawa² and Jonathan G. Lundgren^{1*}

¹ Department of Biology, Ecdysis Foundation, Estelline, SD, United States, ² Department of Earth and Environmental Sciences, California State University, East Bay, Hayward, CA, United States

Agroecological management improves ecosystem services in almond orchards within one year

<u>Vincent De Leijster</u>^a ♀ ⊠, <u>Maria João Santos</u>^{a b}, <u>Martin J. Wassen</u>^a, <u>Maria Eugenia Ramos-Font</u>^c, <u>Ana Belén Robles</u>^c, <u>Mario Díaz</u>^a, <u>Maartje Staal</u>^a, <u>Pita A. Verweij</u>^a

Show more 🥆


+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.ecoser.2019.100948 7

Get rights and content 🛪

Key knowledge gaps

- Food safety (A. Pires et al)
- Water cycling and footprint (K. Suvokarev et al)
 - Preliminary study, 5 orchards
 - No significant differences in ET
- Re optimizing management/designs

Key enabling technologies

Off ground harvesting Groundwater recharge

- Research on commercial farms / trials
- Successful models in the Valley , co-learnings
 - Can help tackle some common production challenges (infiltration, salinity...)
 - Uncertainties in timing of benefits to growers
 - Science: 5 years vs 20+ years
 - Complex and need to assist growers
- Costs/benefits: support in transitioning
 - What is the cost of not doing anything?
 - Long term vision for management , so are trees !

Gardiner Farms

Valuing growers experience and knowledge

Thank you